skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kovařík, Hynek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract By the Aharonov–Casher theorem, the Pauli operatorPhas no zero eigenvalue when the normalized magnetic flux$$\alpha $$ α satisfies$$|\alpha |<1$$ | α | < 1 , but it does have a zero energy resonance. We prove that in this case a Lieb–Thirring inequality for the$$\gamma $$ γ -th moment of the eigenvalues of$$P+V$$ P + V is valid under the optimal restrictions$$\gamma \ge |\alpha |$$ γ | α | and$$\gamma >0$$ γ > 0 . Besides the usual semiclassical integral, the right side of our inequality involves an integral where the zero energy resonance state appears explicitly. Our inequality improves earlier works that were restricted to moments of order$$\gamma \ge 1$$ γ 1
    more » « less